Skip to contents

When getting records from FinBIF there are many options for filtering the data before it is downloaded, saving bandwidth and local post-processing time. For the full list of filtering options see ?filters.

Location

Records can be filtered by the name of a location.

finbif_occurrence(filter = c(country = "Finland"))
#> Records downloaded: 10
#> Records available: 43683065
#> A data.frame [10 x 12]
#>               record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1         …JX.1540644#6 Alauda arvensis Lin…  1         60.4387   22.39332 2023-03-29 12:00:00
#> 2         …JX.1540639#6 Poecile montanus (C…  2         64.20512  24.62847 2023-03-29 12:00:00
#> 3        …JX.1540639#15 Poecile montanus (C…  2         64.20512  24.62847 2023-03-29 12:00:00
#> 4         …JX.1540639#3 Poecile montanus (C…        NA  64.29474  24.62077 2023-03-29 12:00:00
#> 5        …JX.1540639#21 Dendrocopos major (…  1         64.20512  24.62847 2023-03-29 12:00:00
#> 6        …JX.1540639#12 Dryocopus martius (…  1         64.20163  24.4228  2023-03-29 12:00:00
#> 7        …JX.1540639#18 Loxia curvirostra L…  1         64.20512  24.62847 2023-03-29 12:00:00
#> 8         …JX.1540639#9 Lophophanes cristat…  1         64.20163  24.4228  2023-03-29 12:00:00
#> 9  …KE.176/64240a1ed5d… Grus grus (Linnaeus…  1         60.41577  22.64869 2023-03-29 12:00:00
#> 10        …JX.1540533#3 Picus canus J.F. Gm…  1         60.94497  26.38517 2023-03-29 12:00:00
#> ...with 0 more record and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality

Or by a set of coordinates.

finbif_occurrence(
  filter = list(coordinates = list(c(60, 68), c(20, 30), "wgs84"))
)
#> Records downloaded: 10
#> Records available: 36571059
#> A data.frame [10 x 12]
#>               record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1         …JX.1540644#6 Alauda arvensis Lin…  1         60.4387   22.39332 2023-03-29 12:00:00
#> 2         …JX.1540639#6 Poecile montanus (C…  2         64.20512  24.62847 2023-03-29 12:00:00
#> 3        …JX.1540639#15 Poecile montanus (C…  2         64.20512  24.62847 2023-03-29 12:00:00
#> 4         …JX.1540639#3 Poecile montanus (C…        NA  64.29474  24.62077 2023-03-29 12:00:00
#> 5        …JX.1540639#21 Dendrocopos major (…  1         64.20512  24.62847 2023-03-29 12:00:00
#> 6        …JX.1540639#12 Dryocopus martius (…  1         64.20163  24.4228  2023-03-29 12:00:00
#> 7        …JX.1540639#18 Loxia curvirostra L…  1         64.20512  24.62847 2023-03-29 12:00:00
#> 8         …JX.1540639#9 Lophophanes cristat…  1         64.20163  24.4228  2023-03-29 12:00:00
#> 9  …KE.176/64240a1ed5d… Grus grus (Linnaeus…  1         60.41577  22.64869 2023-03-29 12:00:00
#> 10        …JX.1540533#3 Picus canus J.F. Gm…  1         60.94497  26.38517 2023-03-29 12:00:00
#> ...with 0 more record and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality

See ?filters section “Location” for more details

Time

The event or import date of records can be used to filter occurrence data from FinBIF. The date filters can be a single year, month or date,

finbif_occurrence(filter = list(date_range_ym = c("2019-12")))
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 19546
#> A data.frame [10 x 12]
#>               record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1  …KE.921/LGE.627772/…      Pteromys volans  1         61.81362  25.75756 2019-12-31 12:00:00
#> 2         …JX.1054777#4   Sarcosoma globosum  1         60.28506  21.98599 2019-12-31 12:00:00
#> 3         …JX.1054554#7    Exidia glandulosa  1         60.37529  23.16411 2019-12-31 12:00:00
#> 4         …JX.1054930#7     Panellus ringens  1         63.068    21.6902  2019-12-31 12:00:00
#> 5         …JX.1054930#4 Basidioradulum radu…  1         63.068    21.6902  2019-12-31 12:00:00
#> 6         …JX.1054554#4 Hypocreopsis lichen…  10        60.37529  23.16411 2019-12-31 12:00:00
#> 7         …JX.1054621#4           Flammulina  10        60.39362  25.67044 2019-12-31 12:00:00
#> 8   …HR.3211/65241302-U     Pinus sylvestris  1         68.84709  28.33712 2019-12-31 11:00:00
#> 9   …HR.3211/37131235-U  Bombycilla garrulus  1         60.1732   24.9521  2019-12-31 12:00:00
#> 10  …HR.3211/37128031-U  Bombycilla garrulus  1         60.16761  24.94694 2019-12-31 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


, or for record events, a range as a character vector or an Interval object.

finbif_occurrence(
  filter = list(date_range_ymd = c("2019-06-01", "2019-12-31"))
)
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 669879
#> A data.frame [10 x 12]
#>               record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1  …KE.921/LGE.627772/…      Pteromys volans  1         61.81362  25.75756 2019-12-31 12:00:00
#> 2         …JX.1054777#4   Sarcosoma globosum  1         60.28506  21.98599 2019-12-31 12:00:00
#> 3         …JX.1054554#7    Exidia glandulosa  1         60.37529  23.16411 2019-12-31 12:00:00
#> 4         …JX.1054930#7     Panellus ringens  1         63.068    21.6902  2019-12-31 12:00:00
#> 5         …JX.1054930#4 Basidioradulum radu…  1         63.068    21.6902  2019-12-31 12:00:00
#> 6         …JX.1054554#4 Hypocreopsis lichen…  10        60.37529  23.16411 2019-12-31 12:00:00
#> 7         …JX.1054621#4           Flammulina  10        60.39362  25.67044 2019-12-31 12:00:00
#> 8   …HR.3211/65241302-U     Pinus sylvestris  1         68.84709  28.33712 2019-12-31 11:00:00
#> 9   …HR.3211/37131235-U  Bombycilla garrulus  1         60.1732   24.9521  2019-12-31 12:00:00
#> 10  …HR.3211/37128031-U  Bombycilla garrulus  1         60.16761  24.94694 2019-12-31 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


Records for a specific season or time-span across all years can also be requested.

finbif_occurrence(
  filter = list(
    date_range_md = c(begin = "12-21", end = "12-31"),
    date_range_md = c(begin = "01-01", end = "02-20")
  )
)
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 1598855
#> A data.frame [10 x 12]
#>              record_id     scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1  …HR.3211/69860385-U       Magnoliopsida  1         60.30464  25.00083 2021-02-20 12:00:00
#> 2      …JX.1223101#107           Pica pica  8         62.70713  22.20652 2021-02-20 08:20:00
#> 3       …JX.1223101#85    Poecile montanus  3         62.70713  22.20652 2021-02-20 08:20:00
#> 4      …JX.1223101#153 Emberiza citrinella  24        62.70713  22.20652 2021-02-20 08:20:00
#> 5      …JX.1223101#117        Corvus corax  4         62.70713  22.20652 2021-02-20 08:20:00
#> 6       …JX.1223101#61   Dendrocopos major  1         62.70713  22.20652 2021-02-20 08:20:00
#> 7      …JX.1223101#111     Corvus monedula  4         62.70713  22.20652 2021-02-20 08:20:00
#> 8      …JX.1223101#123     Passer montanus  3         62.70713  22.20652 2021-02-20 08:20:00
#> 9      …JX.1223101#149   Pyrrhula pyrrhula  10        62.70713  22.20652 2021-02-20 08:20:00
#> 10      …JX.1223101#93 Cyanistes caeruleus  47        62.70713  22.20652 2021-02-20 08:20:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


Data Quality

You can filter occurrence records by indicators of data quality. See ?filters section “Quality” for details.

strict <- c(
  collection_quality = "professional", coordinates_uncertainty_max = 1,
  record_quality = "expert_verified"
)
permissive <- list(
  quality_issues = "both",
  record_reliability = c("reliable", "unassessed", "unreliable"),
  record_quality = c(
    "expert_verified", "community_verified", "unassessed", "uncertain",
    "erroneous"
  )
)
c(
  strict     = finbif_occurrence(filter = strict,     count_only = TRUE),
  permissive = finbif_occurrence(filter = permissive, count_only = TRUE)
)
#>     strict permissive 
#>         37   40636542

Collection

The FinBIF database consists of a number of constituent collections. You can filter by collection with either the collection or not_collection filters. Use finbif_collections() to see metadata on the FinBIF collections.

finbif_occurrence(
  filter = c(collection = "iNaturalist Suomi Finland"), count_only = TRUE
)
#> [1] 417052
finbif_occurrence(
  filter = c(collection = "Notebook, general observations"), count_only = TRUE
)
#> [1] 1344139

Informal taxonomic groups

You can filter occurrence records based on informal taxonomic groups such as Birds or Mammals.

finbif_occurrence(filter = list(informal_groups = c("Birds", "Mammals")))
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 21117917
#> A data.frame [10 x 12]
#>               record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1  …HR.3211/134012805-U    Microtus agrestis        NA  60.22896  25.08694 2022-09-07 12:00:00
#> 2  …HR.3211/134000236-U Oryctolagus cunicul…        NA  60.15647  24.69299 2022-09-07 12:00:00
#> 3         …JX.1440059#3    Dendrocopos major  1         61.09692  21.76019 2022-09-06 19:50:00
#> 4         …JX.1440058#6               Passer  2         61.07281  21.75856 2022-09-06 19:00:00
#> 5         …JX.1440058#9            Grus grus  1         61.07281  21.75856 2022-09-06 19:00:00
#> 6         …JX.1440058#3      Accipiter nisus  1         61.07281  21.75856 2022-09-06 19:00:00
#> 7        …JX.1440058#12    Carduelis chloris  3         61.07281  21.75856 2022-09-06 19:00:00
#> 8  …HR.3211/133925964-U          Larus canus        NA  60.1      24.9     2022-09-06 12:00:00
#> 9  …HR.3211/133975979-U     Anthus trivialis        NA  60.23348  24.91985 2022-09-06 12:00:00
#> 10 …HR.3211/133975532-U       Sylvia curruca        NA  60.2336   24.91986 2022-09-06 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


See finbif_informal_groups() for the full list of groups you can filter by. You can use the same function to see the subgroups that make up a higher level informal group:

finbif_informal_groups("macrofungi")
#>  ¦--Macrofungi                                                
#>  ¦   ¦--Agaricoid fungi                                       
#>  ¦   ¦--Aphyllophoroid fungi                                  
#>  ¦   ¦   ¦--Cantharelloid fungi                               
#>  ¦   ¦   ¦--Clavarioid fungi                                  
#>  ¦   ¦   ¦--Corticioid fungi                                  
#>  ¦   ¦   ¦--Hydnoid fungi                                     
#>  ¦   ¦   ¦--Jelly fungi, tremelloid fungi                     
#>  ¦   ¦   ¦--Polypores                                         
#>  ¦   ¦   °--Ramarioid fungi                                   
#>  ¦   ¦--Boletoid fungi                                        
#>  ¦   ¦--Cyphelloid fungi                                      
#>  ¦   °--Gastroid fungi, puffballs

Regulatory

Many records in the FinBIF database include taxa that have one or another regulatory statuses. See finbif_metadata("regulatory_status") for a list of regulatory statuses and short-codes.

# Search for birds on the EU invasive species list
finbif_occurrence(
  filter = list(informal_groups = "Birds", regulatory_status = "EU_INVSV")
)
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 469
#> A data.frame [10 x 12]
#>               record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1  …KE.176/62b1ad90d5d…   Oxyura jamaicensis  7         61.66207  23.57706 2022-06-21 12:00:00
#> 2        …JX.1045316#34 Alopochen aegyptiaca  3         52.16081  4.485534 2019-10-23 13:00:00
#> 3        …JX.138840#123 Alopochen aegyptiaca  4         53.36759  6.191796 2018-10-26 11:15:00
#> 4        …JX.139978#214 Alopochen aegyptiaca  6         53.37574  6.207861 2018-10-23 08:30:00
#> 5         …JX.139710#17 Alopochen aegyptiaca  30        52.3399   5.069133 2018-10-22 10:45:00
#> 6         …JX.139645#57 Alopochen aegyptiaca  36        51.74641  4.535283 2018-10-21 13:00:00
#> 7         …JX.139645#10 Alopochen aegyptiaca  3         51.74641  4.535283 2018-10-21 13:00:00
#> 8         …JX.139442#16 Alopochen aegyptiaca  2         51.90871  4.53258  2018-10-20 12:10:00
#> 9      …KE.8_1208123#15 Alopochen aegyptiaca  2         53.19242  5.437417 2017-10-24 11:06:00
#> 10    …KE.8_1208068#101 Alopochen aegyptiaca  20        53.32081  6.192341 2017-10-23 12:15:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


IUCN red list

Filtering can be done by IUCN red list category. See finbif_metadata("red_list") for the IUCN red list categories and their short-codes.

# Search for near threatened mammals
finbif_occurrence(
  filter = list(informal_groups = "Mammals", red_list_status = "NT")
)
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 2503
#> A data.frame [10 x 12]
#>               record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1  …KE.176/63122fa2d5d… Rangifer tarandus f…  2         64.493    25.417   2022-09-01 12:00:00
#> 2         …JX.1436288#3 Rangifer tarandus f…  1         62.65913  24.56789 2022-08-25 12:00:00
#> 3       …JX.1427444#284 Rangifer tarandus f…  1         64.32297  28.86242 2022-08-21 12:00:00
#> 4       …JX.1427444#293 Rangifer tarandus f…  1         64.43202  28.91627 2022-08-21 12:00:00
#> 5  …HR.3211/131434391-U                 <NA>        NA  60.74312  24.77281 2022-08-19 12:00:00
#> 6  …HR.3211/131366861-U Rangifer tarandus f…        NA  63.9      24.9     2022-08-18 12:00:00
#> 7        …JX.1427444#95 Rangifer tarandus f…        NA  64.07652  29.75366 2022-08-17 12:00:00
#> 8         …JX.1432414#3 Rangifer tarandus f…  3         62.15446  22.18987 2022-08-14 10:00:00
#> 9         …JX.1431845#3 Rangifer tarandus f…  1         63.31183  24.90167 2022-08-11 12:00:00
#> 10        …JX.1430963#3 Rangifer tarandus f…  1         62.29971  24.48758 2022-08-11 06:20:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


Habitat type

Many taxa are associated with one or more primary or secondary habitat types (e.g., forest) or subtypes (e.g., herb-rich alpine birch forests). Use finbif_metadata("habitat_type") to see the habitat types in FinBIF. You can filter occurrence records based on primary (or primary/secondary) habitat type or subtype codes. Note that filtering based on habitat is on taxa not on the location (i.e., filtering records with primary_habitat = "M" will only return records of taxa considered to primarily inhabit forests, yet the locations of those records may encompass habitats other than forests).

head(finbif_metadata("habitat_type"))
#>   habitat_code habitat_description                               
#> 1 U            ? – Habitat unknown                               
#> 2 I            I – Rural biotopes and cultural habitats          
#> 3 Ih           Ih – wooded pastures, pollard meadows and grazed …
#> 4 Ik           Ik – seminatural moist meadows (excluding shore m…
#> 5 In           In – seminatural dry meadows                      
#> 6 Io           Io – ditches etc.
# Search records of taxa for which forests are their primary or secondary
# habitat type
finbif_occurrence(filter = c(primary_secondary_habitat = "M"))
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 22695106
#> A data.frame [10 x 12]
#>    record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1    …5966#9 Trichaptum fuscovio…  1         65.08865  25.45157 2021-10-05 12:00:00
#> 2    …5966#3  Lycogala epidendrum  1         65.08865  25.45157 2021-10-05 12:00:00
#> 3    …5966#6 Stereum sanguinolen…  1         65.08865  25.45157 2021-10-05 12:00:00
#> 4    …5969#3      Rana temporaria  1         62.48525  21.75467 2021-10-05 12:00:00
#> 5    …5950#3 Exechiopsis fimbria…  1         65.01504  25.52607 2021-10-05 12:00:00
#> 6    …5929#9   Epirrita autumnata  1         62.92172  27.63335 2021-10-05 12:00:00
#> 7    …5929#6  Poecilocampa populi  1         62.92172  27.63335 2021-10-05 12:00:00
#> 8    …5929#3      Xestia c-nigrum  1         62.92172  27.63335 2021-10-05 12:00:00
#> 9    …6006#3  Tricholoma equestre  1         61.59036  21.46508 2021-10-04 12:00:00
#> 10  …6004#12 Agriopis aurantiaria  2         60.14694  24.7522  2021-10-04 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


You may further refine habitat based searching using a specific habitat type qualifier such as “sun-exposed” or “shady”. Use finbif_metadata("habitat_qualifier") to see the qualifiers available. To specify qualifiers use a named list of character vectors where the names are habitat types or subtypes and the elements of the character vectors are the qualifier codes.

finbif_metadata("habitat_qualifier")[4:6, ]
#>   qualifier_code qualifier_description                             
#> 4 KA             ka – acidic rocks and boulder fields              
#> 5 KE             ke – intermediate-basic rock outcrops and boulder…
#> 6 P              p – burnt forest areas and other young stages of …
# Search records of taxa for which forests with sun-exposure and broadleaved
# deciduous trees are their primary habitat type
finbif_occurrence(filter = list(primary_habitat = list(M = c("PA", "J"))))
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 123
#> A data.frame [10 x 12]
#>              record_id  scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1       …JX.1263703#60 Pammene fasciana  1         60.08841  22.48629 2021-06-22 12:00:00
#> 2      …JX.1256040#165 Pammene fasciana  1         60.08841  22.48629 2021-06-19 12:00:00
#> 3  …HR.3211/53817755-U Pammene fasciana  1         59.90452  23.72726 2020-07-21 12:00:00
#> 4        …JX.1134471#4 Pammene fasciana  2         61.54984  29.50158 2020-06-21 12:00:00
#> 5      …JX.1143718#265 Pammene fasciana  1         60.3754   22.37212 2020-06-10 12:00:00
#> 6      …JX.1012832#367 Pammene fasciana  1         60.00217  23.43591 2019-06-22 12:00:00
#> 7      …JX.1098381#487 Pammene fasciana  1         60.04555  23.31692 2019-06-19 12:00:00
#> 8       …JX.1011605#97 Pammene fasciana  1         60.50396  27.72823 2019-05-30 12:00:00
#> 9       …JX.996622#130 Pammene fasciana  3         60.00217  23.43591 2019-05-08 12:00:00
#> 10      …JX.1103286#13 Pammene fasciana  1         59.90522  23.49645 2018-05-28 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


Status of taxa in Finland

You can restrict the occurrence records by the status of the taxa in Finland. For example you can request records for only rare species.

finbif_occurrence(filter = c(finnish_occurrence_status = "rare"))
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 318316
#> A data.frame [10 x 12]
#>              record_id      scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1        …JX.1315617#3 Stigmella ruficapit…  1         61.51447  24.0233  2021-10-03 12:00:00
#> 2        …JX.1315617#6 Stigmella ruficapit…  5         61.51447  24.0233  2021-10-03 12:00:00
#> 3        …JX.1315625#3 Ectoedemia turbidel…  10        60.21493  24.86162 2021-10-03 12:00:00
#> 4        …JX.1315620#3 Ectoedemia intimella  1         62.0223   25.6044  2021-10-03 12:00:00
#> 5        …JX.1315390#3 Stigmella assimilel…  1         61.51447  24.0233  2021-10-02 12:00:00
#> 6        …JX.1314937#9 Stigmella glutinosae  1         61.51447  24.0233  2021-10-01 12:00:00
#> 7        …JX.1315138#3 Stigmella filipendu…  3         62.64272  29.63881 2021-10-01 12:00:00
#> 8        …JX.1305550#3 Stigmella myrtillel…  1         61.51447  24.0233  2021-09-30 12:00:00
#> 9        …JX.1315169#3 Ectoedemia intimella  2         61.58965  27.65204 2021-09-30 12:00:00
#> 10 …HR.3211/96782798-U Lyonetia prunifolie…  1         60.35792  24.78564 2021-09-30 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


Or, by using the negation of occurrence status, you can request records of birds excluding those considered vagrants.

finbif_occurrence(
  filter = list(
    informal_groups               = "birds",
    finnish_occurrence_status_neg = sprintf("vagrant_%sregular", c("", "ir"))
  )
)
Click to show/hide output.

#> Records downloaded: 10
#> Records available: 20779181
#> A data.frame [10 x 12]
#>               record_id     scientific_name abundance lat_wgs84 lon_wgs84           date_time
#> 1         …JX.1440059#3   Dendrocopos major  1         61.09692  21.76019 2022-09-06 19:50:00
#> 2         …JX.1440058#6              Passer  2         61.07281  21.75856 2022-09-06 19:00:00
#> 3         …JX.1440058#9           Grus grus  1         61.07281  21.75856 2022-09-06 19:00:00
#> 4         …JX.1440058#3     Accipiter nisus  1         61.07281  21.75856 2022-09-06 19:00:00
#> 5        …JX.1440058#12   Carduelis chloris  3         61.07281  21.75856 2022-09-06 19:00:00
#> 6  …HR.3211/133925964-U         Larus canus        NA  60.1      24.9     2022-09-06 12:00:00
#> 7  …HR.3211/133975979-U    Anthus trivialis        NA  60.23348  24.91985 2022-09-06 12:00:00
#> 8  …HR.3211/133975532-U      Sylvia curruca        NA  60.2336   24.91986 2022-09-06 12:00:00
#> 9  …HR.3211/133877304-U Garrulus glandarius        NA  61.44345  23.86333 2022-09-06 12:00:00
#> 10 …HR.3211/133974658-U      Turdus iliacus        NA  60.22801  24.91946 2022-09-06 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality


See finbif_metadata("finnish_occurrence_status") for a full list of statuses and their descriptions.