
Filtering occurrence records
William K. Morris
Source:vignettes/v05_filtering.Rmd
v05_filtering.Rmd
When getting records from FinBIF there are many options for filtering
the data before it is downloaded, saving bandwidth and local
post-processing time. For the full list of filtering options see
?filters
.
Location
Records can be filtered by the name of a location.
finbif_occurrence(filter = c(country = "Finland"))
#> Records downloaded: 10
#> Records available: 43683065
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …JX.1540644#6 Alauda arvensis Lin… 1 60.4387 22.39332 2023-03-29 12:00:00
#> 2 …JX.1540639#6 Poecile montanus (C… 2 64.20512 24.62847 2023-03-29 12:00:00
#> 3 …JX.1540639#15 Poecile montanus (C… 2 64.20512 24.62847 2023-03-29 12:00:00
#> 4 …JX.1540639#3 Poecile montanus (C… NA 64.29474 24.62077 2023-03-29 12:00:00
#> 5 …JX.1540639#21 Dendrocopos major (… 1 64.20512 24.62847 2023-03-29 12:00:00
#> 6 …JX.1540639#12 Dryocopus martius (… 1 64.20163 24.4228 2023-03-29 12:00:00
#> 7 …JX.1540639#18 Loxia curvirostra L… 1 64.20512 24.62847 2023-03-29 12:00:00
#> 8 …JX.1540639#9 Lophophanes cristat… 1 64.20163 24.4228 2023-03-29 12:00:00
#> 9 …KE.176/64240a1ed5d… Grus grus (Linnaeus… 1 60.41577 22.64869 2023-03-29 12:00:00
#> 10 …JX.1540533#3 Picus canus J.F. Gm… 1 60.94497 26.38517 2023-03-29 12:00:00
#> ...with 0 more record and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
Or by a set of coordinates.
finbif_occurrence(
filter = list(coordinates = list(c(60, 68), c(20, 30), "wgs84"))
)
#> Records downloaded: 10
#> Records available: 36571059
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …JX.1540644#6 Alauda arvensis Lin… 1 60.4387 22.39332 2023-03-29 12:00:00
#> 2 …JX.1540639#6 Poecile montanus (C… 2 64.20512 24.62847 2023-03-29 12:00:00
#> 3 …JX.1540639#15 Poecile montanus (C… 2 64.20512 24.62847 2023-03-29 12:00:00
#> 4 …JX.1540639#3 Poecile montanus (C… NA 64.29474 24.62077 2023-03-29 12:00:00
#> 5 …JX.1540639#21 Dendrocopos major (… 1 64.20512 24.62847 2023-03-29 12:00:00
#> 6 …JX.1540639#12 Dryocopus martius (… 1 64.20163 24.4228 2023-03-29 12:00:00
#> 7 …JX.1540639#18 Loxia curvirostra L… 1 64.20512 24.62847 2023-03-29 12:00:00
#> 8 …JX.1540639#9 Lophophanes cristat… 1 64.20163 24.4228 2023-03-29 12:00:00
#> 9 …KE.176/64240a1ed5d… Grus grus (Linnaeus… 1 60.41577 22.64869 2023-03-29 12:00:00
#> 10 …JX.1540533#3 Picus canus J.F. Gm… 1 60.94497 26.38517 2023-03-29 12:00:00
#> ...with 0 more record and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
See ?filters
section “Location” for more details
Time
The event or import date of records can be used to filter occurrence data from FinBIF. The date filters can be a single year, month or date,
finbif_occurrence(filter = list(date_range_ym = c("2019-12")))
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 19546
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …KE.921/LGE.627772/… Pteromys volans 1 61.81362 25.75756 2019-12-31 12:00:00
#> 2 …JX.1054777#4 Sarcosoma globosum 1 60.28506 21.98599 2019-12-31 12:00:00
#> 3 …JX.1054554#7 Exidia glandulosa 1 60.37529 23.16411 2019-12-31 12:00:00
#> 4 …JX.1054930#7 Panellus ringens 1 63.068 21.6902 2019-12-31 12:00:00
#> 5 …JX.1054930#4 Basidioradulum radu… 1 63.068 21.6902 2019-12-31 12:00:00
#> 6 …JX.1054554#4 Hypocreopsis lichen… 10 60.37529 23.16411 2019-12-31 12:00:00
#> 7 …JX.1054621#4 Flammulina 10 60.39362 25.67044 2019-12-31 12:00:00
#> 8 …HR.3211/65241302-U Pinus sylvestris 1 68.84709 28.33712 2019-12-31 11:00:00
#> 9 …HR.3211/37131235-U Bombycilla garrulus 1 60.1732 24.9521 2019-12-31 12:00:00
#> 10 …HR.3211/37128031-U Bombycilla garrulus 1 60.16761 24.94694 2019-12-31 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
, or for record events, a range as a character vector or an Interval
object.
finbif_occurrence(
filter = list(date_range_ymd = c("2019-06-01", "2019-12-31"))
)
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 669879
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …KE.921/LGE.627772/… Pteromys volans 1 61.81362 25.75756 2019-12-31 12:00:00
#> 2 …JX.1054777#4 Sarcosoma globosum 1 60.28506 21.98599 2019-12-31 12:00:00
#> 3 …JX.1054554#7 Exidia glandulosa 1 60.37529 23.16411 2019-12-31 12:00:00
#> 4 …JX.1054930#7 Panellus ringens 1 63.068 21.6902 2019-12-31 12:00:00
#> 5 …JX.1054930#4 Basidioradulum radu… 1 63.068 21.6902 2019-12-31 12:00:00
#> 6 …JX.1054554#4 Hypocreopsis lichen… 10 60.37529 23.16411 2019-12-31 12:00:00
#> 7 …JX.1054621#4 Flammulina 10 60.39362 25.67044 2019-12-31 12:00:00
#> 8 …HR.3211/65241302-U Pinus sylvestris 1 68.84709 28.33712 2019-12-31 11:00:00
#> 9 …HR.3211/37131235-U Bombycilla garrulus 1 60.1732 24.9521 2019-12-31 12:00:00
#> 10 …HR.3211/37128031-U Bombycilla garrulus 1 60.16761 24.94694 2019-12-31 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
Records for a specific season or time-span across all years can also be requested.
finbif_occurrence(
filter = list(
date_range_md = c(begin = "12-21", end = "12-31"),
date_range_md = c(begin = "01-01", end = "02-20")
)
)
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 1598855
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …HR.3211/69860385-U Magnoliopsida 1 60.30464 25.00083 2021-02-20 12:00:00
#> 2 …JX.1223101#107 Pica pica 8 62.70713 22.20652 2021-02-20 08:20:00
#> 3 …JX.1223101#85 Poecile montanus 3 62.70713 22.20652 2021-02-20 08:20:00
#> 4 …JX.1223101#153 Emberiza citrinella 24 62.70713 22.20652 2021-02-20 08:20:00
#> 5 …JX.1223101#117 Corvus corax 4 62.70713 22.20652 2021-02-20 08:20:00
#> 6 …JX.1223101#61 Dendrocopos major 1 62.70713 22.20652 2021-02-20 08:20:00
#> 7 …JX.1223101#111 Corvus monedula 4 62.70713 22.20652 2021-02-20 08:20:00
#> 8 …JX.1223101#123 Passer montanus 3 62.70713 22.20652 2021-02-20 08:20:00
#> 9 …JX.1223101#149 Pyrrhula pyrrhula 10 62.70713 22.20652 2021-02-20 08:20:00
#> 10 …JX.1223101#93 Cyanistes caeruleus 47 62.70713 22.20652 2021-02-20 08:20:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
Data Quality
You can filter occurrence records by indicators of data quality. See
?filters
section “Quality” for details.
strict <- c(
collection_quality = "professional", coordinates_uncertainty_max = 1,
record_quality = "expert_verified"
)
permissive <- list(
quality_issues = "both",
record_reliability = c("reliable", "unassessed", "unreliable"),
record_quality = c(
"expert_verified", "community_verified", "unassessed", "uncertain",
"erroneous"
)
)
c(
strict = finbif_occurrence(filter = strict, count_only = TRUE),
permissive = finbif_occurrence(filter = permissive, count_only = TRUE)
)
#> strict permissive
#> 37 40636542
Collection
The FinBIF database consists of a number of constituent collections.
You can filter by collection with either the collection
or
not_collection
filters. Use
finbif_collections()
to see metadata on the FinBIF
collections.
finbif_occurrence(
filter = c(collection = "iNaturalist Suomi Finland"), count_only = TRUE
)
#> [1] 417052
finbif_occurrence(
filter = c(collection = "Notebook, general observations"), count_only = TRUE
)
#> [1] 1344139
Informal taxonomic groups
You can filter occurrence records based on informal taxonomic groups
such as Birds
or Mammals
.
finbif_occurrence(filter = list(informal_groups = c("Birds", "Mammals")))
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 21117917
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …HR.3211/134012805-U Microtus agrestis NA 60.22896 25.08694 2022-09-07 12:00:00
#> 2 …HR.3211/134000236-U Oryctolagus cunicul… NA 60.15647 24.69299 2022-09-07 12:00:00
#> 3 …JX.1440059#3 Dendrocopos major 1 61.09692 21.76019 2022-09-06 19:50:00
#> 4 …JX.1440058#6 Passer 2 61.07281 21.75856 2022-09-06 19:00:00
#> 5 …JX.1440058#9 Grus grus 1 61.07281 21.75856 2022-09-06 19:00:00
#> 6 …JX.1440058#3 Accipiter nisus 1 61.07281 21.75856 2022-09-06 19:00:00
#> 7 …JX.1440058#12 Carduelis chloris 3 61.07281 21.75856 2022-09-06 19:00:00
#> 8 …HR.3211/133925964-U Larus canus NA 60.1 24.9 2022-09-06 12:00:00
#> 9 …HR.3211/133975979-U Anthus trivialis NA 60.23348 24.91985 2022-09-06 12:00:00
#> 10 …HR.3211/133975532-U Sylvia curruca NA 60.2336 24.91986 2022-09-06 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
See finbif_informal_groups()
for the full list of groups
you can filter by. You can use the same function to see the subgroups
that make up a higher level informal group:
finbif_informal_groups("macrofungi")
#> ¦--Macrofungi
#> ¦ ¦--Agaricoid fungi
#> ¦ ¦--Aphyllophoroid fungi
#> ¦ ¦ ¦--Cantharelloid fungi
#> ¦ ¦ ¦--Clavarioid fungi
#> ¦ ¦ ¦--Corticioid fungi
#> ¦ ¦ ¦--Hydnoid fungi
#> ¦ ¦ ¦--Jelly fungi, tremelloid fungi
#> ¦ ¦ ¦--Polypores
#> ¦ ¦ °--Ramarioid fungi
#> ¦ ¦--Boletoid fungi
#> ¦ ¦--Cyphelloid fungi
#> ¦ °--Gastroid fungi, puffballs
Regulatory
Many records in the FinBIF database include taxa that have one or
another regulatory statuses. See
finbif_metadata("regulatory_status")
for a list of
regulatory statuses and short-codes.
# Search for birds on the EU invasive species list
finbif_occurrence(
filter = list(informal_groups = "Birds", regulatory_status = "EU_INVSV")
)
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 469
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …KE.176/62b1ad90d5d… Oxyura jamaicensis 7 61.66207 23.57706 2022-06-21 12:00:00
#> 2 …JX.1045316#34 Alopochen aegyptiaca 3 52.16081 4.485534 2019-10-23 13:00:00
#> 3 …JX.138840#123 Alopochen aegyptiaca 4 53.36759 6.191796 2018-10-26 11:15:00
#> 4 …JX.139978#214 Alopochen aegyptiaca 6 53.37574 6.207861 2018-10-23 08:30:00
#> 5 …JX.139710#17 Alopochen aegyptiaca 30 52.3399 5.069133 2018-10-22 10:45:00
#> 6 …JX.139645#57 Alopochen aegyptiaca 36 51.74641 4.535283 2018-10-21 13:00:00
#> 7 …JX.139645#10 Alopochen aegyptiaca 3 51.74641 4.535283 2018-10-21 13:00:00
#> 8 …JX.139442#16 Alopochen aegyptiaca 2 51.90871 4.53258 2018-10-20 12:10:00
#> 9 …KE.8_1208123#15 Alopochen aegyptiaca 2 53.19242 5.437417 2017-10-24 11:06:00
#> 10 …KE.8_1208068#101 Alopochen aegyptiaca 20 53.32081 6.192341 2017-10-23 12:15:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
IUCN red list
Filtering can be done by IUCN red list category. See
finbif_metadata("red_list")
for the IUCN red list
categories and their short-codes.
# Search for near threatened mammals
finbif_occurrence(
filter = list(informal_groups = "Mammals", red_list_status = "NT")
)
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 2503
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …KE.176/63122fa2d5d… Rangifer tarandus f… 2 64.493 25.417 2022-09-01 12:00:00
#> 2 …JX.1436288#3 Rangifer tarandus f… 1 62.65913 24.56789 2022-08-25 12:00:00
#> 3 …JX.1427444#284 Rangifer tarandus f… 1 64.32297 28.86242 2022-08-21 12:00:00
#> 4 …JX.1427444#293 Rangifer tarandus f… 1 64.43202 28.91627 2022-08-21 12:00:00
#> 5 …HR.3211/131434391-U <NA> NA 60.74312 24.77281 2022-08-19 12:00:00
#> 6 …HR.3211/131366861-U Rangifer tarandus f… NA 63.9 24.9 2022-08-18 12:00:00
#> 7 …JX.1427444#95 Rangifer tarandus f… NA 64.07652 29.75366 2022-08-17 12:00:00
#> 8 …JX.1432414#3 Rangifer tarandus f… 3 62.15446 22.18987 2022-08-14 10:00:00
#> 9 …JX.1431845#3 Rangifer tarandus f… 1 63.31183 24.90167 2022-08-11 12:00:00
#> 10 …JX.1430963#3 Rangifer tarandus f… 1 62.29971 24.48758 2022-08-11 06:20:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
Habitat type
Many taxa are associated with one or more primary or secondary
habitat types (e.g., forest) or subtypes (e.g., herb-rich alpine birch
forests). Use finbif_metadata("habitat_type")
to see the
habitat types in FinBIF. You can filter occurrence records based on
primary (or primary/secondary) habitat type or subtype codes. Note that
filtering based on habitat is on taxa not on the location (i.e.,
filtering records with primary_habitat = "M"
will only
return records of taxa considered to primarily inhabit forests, yet the
locations of those records may encompass habitats other than
forests).
head(finbif_metadata("habitat_type"))
#> habitat_code habitat_description
#> 1 U ? – Habitat unknown
#> 2 I I – Rural biotopes and cultural habitats
#> 3 Ih Ih – wooded pastures, pollard meadows and grazed …
#> 4 Ik Ik – seminatural moist meadows (excluding shore m…
#> 5 In In – seminatural dry meadows
#> 6 Io Io – ditches etc.
# Search records of taxa for which forests are their primary or secondary
# habitat type
finbif_occurrence(filter = c(primary_secondary_habitat = "M"))
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 22695106
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …5966#9 Trichaptum fuscovio… 1 65.08865 25.45157 2021-10-05 12:00:00
#> 2 …5966#3 Lycogala epidendrum 1 65.08865 25.45157 2021-10-05 12:00:00
#> 3 …5966#6 Stereum sanguinolen… 1 65.08865 25.45157 2021-10-05 12:00:00
#> 4 …5969#3 Rana temporaria 1 62.48525 21.75467 2021-10-05 12:00:00
#> 5 …5950#3 Exechiopsis fimbria… 1 65.01504 25.52607 2021-10-05 12:00:00
#> 6 …5929#9 Epirrita autumnata 1 62.92172 27.63335 2021-10-05 12:00:00
#> 7 …5929#6 Poecilocampa populi 1 62.92172 27.63335 2021-10-05 12:00:00
#> 8 …5929#3 Xestia c-nigrum 1 62.92172 27.63335 2021-10-05 12:00:00
#> 9 …6006#3 Tricholoma equestre 1 61.59036 21.46508 2021-10-04 12:00:00
#> 10 …6004#12 Agriopis aurantiaria 2 60.14694 24.7522 2021-10-04 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
You may further refine habitat based searching using a specific
habitat type qualifier such as “sun-exposed” or “shady”. Use
finbif_metadata("habitat_qualifier")
to see the qualifiers
available. To specify qualifiers use a named list of character vectors
where the names are habitat types or subtypes and the elements of the
character vectors are the qualifier codes.
finbif_metadata("habitat_qualifier")[4:6, ]
#> qualifier_code qualifier_description
#> 4 KA ka – acidic rocks and boulder fields
#> 5 KE ke – intermediate-basic rock outcrops and boulder…
#> 6 P p – burnt forest areas and other young stages of …
# Search records of taxa for which forests with sun-exposure and broadleaved
# deciduous trees are their primary habitat type
finbif_occurrence(filter = list(primary_habitat = list(M = c("PA", "J"))))
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 123
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …JX.1263703#60 Pammene fasciana 1 60.08841 22.48629 2021-06-22 12:00:00
#> 2 …JX.1256040#165 Pammene fasciana 1 60.08841 22.48629 2021-06-19 12:00:00
#> 3 …HR.3211/53817755-U Pammene fasciana 1 59.90452 23.72726 2020-07-21 12:00:00
#> 4 …JX.1134471#4 Pammene fasciana 2 61.54984 29.50158 2020-06-21 12:00:00
#> 5 …JX.1143718#265 Pammene fasciana 1 60.3754 22.37212 2020-06-10 12:00:00
#> 6 …JX.1012832#367 Pammene fasciana 1 60.00217 23.43591 2019-06-22 12:00:00
#> 7 …JX.1098381#487 Pammene fasciana 1 60.04555 23.31692 2019-06-19 12:00:00
#> 8 …JX.1011605#97 Pammene fasciana 1 60.50396 27.72823 2019-05-30 12:00:00
#> 9 …JX.996622#130 Pammene fasciana 3 60.00217 23.43591 2019-05-08 12:00:00
#> 10 …JX.1103286#13 Pammene fasciana 1 59.90522 23.49645 2018-05-28 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
Status of taxa in Finland
You can restrict the occurrence records by the status of the taxa in Finland. For example you can request records for only rare species.
finbif_occurrence(filter = c(finnish_occurrence_status = "rare"))
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 318316
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …JX.1315617#3 Stigmella ruficapit… 1 61.51447 24.0233 2021-10-03 12:00:00
#> 2 …JX.1315617#6 Stigmella ruficapit… 5 61.51447 24.0233 2021-10-03 12:00:00
#> 3 …JX.1315625#3 Ectoedemia turbidel… 10 60.21493 24.86162 2021-10-03 12:00:00
#> 4 …JX.1315620#3 Ectoedemia intimella 1 62.0223 25.6044 2021-10-03 12:00:00
#> 5 …JX.1315390#3 Stigmella assimilel… 1 61.51447 24.0233 2021-10-02 12:00:00
#> 6 …JX.1314937#9 Stigmella glutinosae 1 61.51447 24.0233 2021-10-01 12:00:00
#> 7 …JX.1315138#3 Stigmella filipendu… 3 62.64272 29.63881 2021-10-01 12:00:00
#> 8 …JX.1305550#3 Stigmella myrtillel… 1 61.51447 24.0233 2021-09-30 12:00:00
#> 9 …JX.1315169#3 Ectoedemia intimella 2 61.58965 27.65204 2021-09-30 12:00:00
#> 10 …HR.3211/96782798-U Lyonetia prunifolie… 1 60.35792 24.78564 2021-09-30 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
Or, by using the negation of occurrence status, you can request
records of birds excluding those considered vagrants.
finbif_occurrence(
filter = list(
informal_groups = "birds",
finnish_occurrence_status_neg = sprintf("vagrant_%sregular", c("", "ir"))
)
)
Click to show/hide output.
#> Records downloaded: 10
#> Records available: 20779181
#> A data.frame [10 x 12]
#> record_id scientific_name abundance lat_wgs84 lon_wgs84 date_time
#> 1 …JX.1440059#3 Dendrocopos major 1 61.09692 21.76019 2022-09-06 19:50:00
#> 2 …JX.1440058#6 Passer 2 61.07281 21.75856 2022-09-06 19:00:00
#> 3 …JX.1440058#9 Grus grus 1 61.07281 21.75856 2022-09-06 19:00:00
#> 4 …JX.1440058#3 Accipiter nisus 1 61.07281 21.75856 2022-09-06 19:00:00
#> 5 …JX.1440058#12 Carduelis chloris 3 61.07281 21.75856 2022-09-06 19:00:00
#> 6 …HR.3211/133925964-U Larus canus NA 60.1 24.9 2022-09-06 12:00:00
#> 7 …HR.3211/133975979-U Anthus trivialis NA 60.23348 24.91985 2022-09-06 12:00:00
#> 8 …HR.3211/133975532-U Sylvia curruca NA 60.2336 24.91986 2022-09-06 12:00:00
#> 9 …HR.3211/133877304-U Garrulus glandarius NA 61.44345 23.86333 2022-09-06 12:00:00
#> 10 …HR.3211/133974658-U Turdus iliacus NA 60.22801 24.91946 2022-09-06 12:00:00
#> ...with 0 more records and 6 more variables:
#> coordinates_uncertainty, any_issues, requires_verification, requires_identification,
#> record_reliability, record_quality
See finbif_metadata("finnish_occurrence_status")
for a
full list of statuses and their descriptions.